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Abstract. We first consider the three independent functions that describe the linear response
to external perturbations of anon-interactingstrongly magnetized electron gas. These functions
are needed to build theinteracting response to an external perturbation, even if it is purely
scalar. The interacting response function is obtained in the local density approximation for the
exchange and correlation energy functionalE1

xc(n, ω). It is singular when the non-interacting
Fermi level coincides with a Landau band edge. In addition, the numerical study of the effective
local-field factor shows that the response function can also have poles in a region of densities
and magnetic fields approximately defined by:rs > 3.5 and 0.3 > B/B0 > 0.1, whereB0 is
the reference magnetic field (1 atomic unit= 2.35× 109 Gauss). Outside this region, we use
the linear response theory applied to a model electron–ion interaction for an estimate of the
equation of state of solid aluminium in the presence of strong magnetic fields up toB = B0.
The densities are in the range 0.8–1.5 times the normal density. The results show the importance
of the changes induced by the magnetic field, in particular those associated with the localization
of the charge density.

1. Introduction

The study of the structure of electronic systems in the presence of strong magnetic fields is a
fast-developing area of atomic and solid-state physics. Its applications are no longer limited
to astrophysics [1]. As the output of magnetic-field generators is increasing rapidly and
is now reaching the range of 100 Tesla for non-destructive devices, many experiments are
planned in several areas of condensed-matter physics [2]. If explosively driven implosion
devices are considered, fields as high as 1400 Tesla are presently obtained [3]. These field
values are those for which the electronic structure starts being affected in a non-trivial way
[4]. From the theoretical point of view, the interplay between electron–electron interaction
and magnetic effects is a very challenging problem. For this reason much study of free
atoms in strong magnetic fields is presently being carried out. After the statistical approaches
initiated in the seventies [5–15], the full self-consistent field problem is now being addressed.
Hydrogen [16–34] and helium [16, 24, 35, 36] have been treated first, for instance in the
Hartree–Fock (HF) approximation. More complex systems have been investigated [37],
including H− in excited states [38], molecules [39–42] and even atomic chains [43, 44]. Few
heavier atoms, such as Li [45], C [43, 45] and Fe [43], have been calculated. In condensed
matter, attention has been paid first to two-dimensional (2D) systems, in the context of the
quantum hall effect [46] and for application to nanostructure design [47, 48]. Now three-
dimensional (3D) systems are being investigated actively and this interest will increase in
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relation with the ‘Dirac campaign’ [2]. Another potential application of 3D studies concerns
the Z-pinches experiments [49]. The numerical simulation of these experiments requires
data on the equation of state and electrical conductivity, taking into account the effect of
the magnetic field. The theoretical approach of condensed matter in the presence of strong
fields is far more complex than the already difficult study of localized systems. The well
established framework of HF theory is no use in these systems. The density functional
theory (DFT), very popular in electronic structure calculations of condensed matter, has
been extended to the magnetic case [50]. In the current-DFT (CDFT), the paramagnetic
current becomes a second fundamental quantity [51]. But so far, the intensive numerical
calculations that are necessary to give strong support to this theory are still lacking.

In this paper, we deal with the use of CDFT in simple delocalized condensed-matter
systems. Our aim is to treat the effect of a weak scalar potential perturbation in a strongly
magnetized electron gas (SMEG). The linear response theory of the SMEG is first reviewed.
Because the exchange and correlation effects contribute not only to the scalar potential, but
also to the vector potential, three response functions are involved. In section 2, we replace
the linear-response theory in the context of the CDFT, recall results already published for two
of the non-interacting response functions and give the expression of a third which gives the
relation of the induced current with the perturbing vector potential. The local approximation
of these response functions is also discussed. The limiting forms of the full response for long
and short wavelengths are given in section 3. Section 4 deals with including exchange and
correlation effects in the response functions, thus defining the effective local-field factor.
Section 5 is devoted to numerical applications. First, the local-field factor is computed
numerically, in a rather large domain of densities and magnetic-field intensities, and it
is shown that it can induce singularities in the interacting response function. Second, the
equation of state of metallic aluminium in the presence of strong magnetic fields is calculated
and discussed.

2. Current density functional theory and linear response functions

2.1. General theory

The CDFT of Vignale and Rasolt [51] is a very convenient starting point for the analysis of
the response of a SMEG to external perturbations. Although the linear response functions of
the SMEG can be defined in standard second-order perturbation theory, we find it easier to
introduce the local-field corrections (LFC) in the framework of CDFT. As will be seen later
in this paper, a very compact expression of the LFC is obtained using the CDFT formalism.

The most important result of the CDFT is that the total energy of an electronic system,
in the presence of an external scalar potentialVext(r) and an external vector potentialA(r),
can be written:

E[n(r), jp(r)] = Ts [n(r), jp(r)] + EH [n(r)] +
∫
n(r)

[
Vext(r)+ e2

2m
A2(r)

]
d3r

+e
∫
jp(r) ·A(r) d3r + Exc[n(r), jp(r)]. (2.1)

In this expression,e is the electron charge,m its mass,Ts is the noninteracting ‘pseudo’
kinetic energy (corresponding to the sum of the operators−h̄2/2m∇2), EH is the Coulomb
electron–electron interaction energy andExc the exchange and correlation (xc) energy. The
charge density isn(r), andjp(r) is the paramagnetic (orbital) current. The applied magnetic
field isB = ∇ ∧A. In this work, we neglect for simplicity the Landé magnetic moment
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factor g which could be taken into account without special difficulty. The physical total
currentJ is:

J(r) = jp(r)+ e

m
n(r)A(r). (2.2)

It is useful to introduce the new variable:

u(r) = jp(r)
n(r)

(2.3)

n(r) andu(r) are independent quantities. A second result of the theory is to show that,
for gauge invariance constraints,Exc depends onu(r) through the variable∇ ∧u(r) only.
This will be exploited in the treatment of xc effects.

The Euler–Kohn–Sham equations of the CDFT are obtained in writing the stationarity
condition of the total energy for variations ofn(r) and u(r). They have been already
discussed at length in the original work [51] and are not reproduced here.

Now we consider the case of a uniform system with densityn, in the absence of an
external scalar potential(Vext = 0). In this case, the physical currentJ vanishes, so that
the paramagnetic current is:jp0(r) = − e

m
nA(r), or u0(r) = − e

m
A(r). A weak scalar

perturbing potentialδVext(r) is then applied. It induces a charge densityδn(r) which screens
the perturbation so that the total scalar potential becomesδV (r) (δV does not include xc).
Simultaneously, the vector potential is also perturbed and becomesA(r) + δA(r). The
linear changesδn andδu, are obtained by linearizing the Euler equations:

(Ss + Sxc)δn+ (Us +Uxc)
t δu+ δV = 0 (2.4)

(Us +Uxc)
∗δn+ ([Ms ] + [Mxc])δu+ enδA = 0 (2.5)

where the following notations have been used:

Ss = δ2Ts [n(r),u(r)]

δn(r)δn(r′)

∣∣∣∣
0

Sxc = δ2Exc[n(r),u(r)]

δn(r)δn(r′)

∣∣∣∣
0

(2.6)

Us = δ2Ts [n(r),u(r)]

δu(r)δn(r′)

∣∣∣∣
0

+ eA(r)δ(r − r′) Uxc = δ2Exc[n(r),u(r)]

δu(r)δn(r′)

∣∣∣∣
0

(2.7)

[Ms ] = δ2Ts [n(r),u(r)]

δu(r)δu(r′)

∣∣∣∣
0

[Mxc] = δ2Exc[n(r),u(r)]

δu(r)δu(r′)

∣∣∣∣
0

. (2.8)

Equations (2.4) and (2.5) contain implicit convolution products in real space. The superscript
t indicates transposition and∗ the complex conjugate. In the following, we will use the
superscript+ for the composed operationt∗ (adjoint). The internal productu · v is thus
alsoutv. In the following derivations, we use matrix notation preferably to tensor notation.

We note that the perturbationδA does not appear in the first equation. Notation|0
means that the derivatives are taken for the uniform reference system. The Hamiltonian for
this system contains the vector potentialA(r) that is not translationally invariant. But a
change of coordinates is equivalent to a gauge change. Therefore, any functionalF(r, r′)
associated with a physical quantity of the SMEG that is invariant in a gauge change is
invariant in a translation. Its Fourier transform depends on oneq vector only. This is
the case, in particular, for the response functions of the magnetized electron gas, which
expresses the densityδn and the currentδJ in terms of the perturbationsδV andδA.

2.2. Non-interacting case

Let us first consider the non-interacting case,Exc = 0. The response functions are obtained
in reciprocal space, with the help of equations (2.4) and (2.5).



6848 F Perrot and A Grimaldi

The density/scalar potential responseχnV (scalar) is:

1

χnV
= −Ss +U t

s [Ms ]
−1U ∗s . (2.9)

The current/scalar potential responseχJV (vector) is:

χJV = −nχnV [Ms ]
−1U ∗s . (2.10)

The current/vector potential response [χJA] (matrix) is:

[χJA] = e 1

χnV
[χ∗JV χ

t
JV ] − en

m
(mn[Ms ]

−1− [I]). (2.11)

Equations (2.9)–(2.11) show that the simultaneous knowledge ofχnV , χJV and [χJA] makes
it possible to determineSs , Us and [Ms ]−1. Therefore, the functionalTs to the second order
in δn andδu is entirely determined by these three response functions. The energy expression
involves [Ms ]: this means that, in practice, one must invert the matrix [Ms ]−1 obtained from
equation (2.11). The inversion can be performed analytically because the structure ofχJV
and [χJA] is very special, as will be seen below.

Finally, the density/vector potential response functionχnA can be expressed in terms of
the previous ones and is thus redundant.

2.3. Structure of the response functions

The response functions have been calculated using standard second-order perturbation theory
for non-degenerate states. In particular,χnV has been extensively studied in the literature
[53–56] and the numerical problems related to its computation are known [57]. We
summarize here a few basic results in order to define notations that will be used in the
following paragraphs.

The magnetic lengthλ is the important length scale in physical space. It is defined as:

λ2 = h̄

mω
(2.12)

and depends on the cyclotron frequencyω = eB/m. The reduced matrix elements needed
in all the response functions are:

kMN(s) =
(
s√
2

)M−N √
N !

M!
exp

(
−1

4
s2

)
LM−NN

(
1

2
s2

)
(2.13)

whereN(M) is a Landau band index. Equation (2.13) is valid ifN 6 M and must be
supplemented with:

kMN(s) = (−1)M−NkNM(s)

whenM < N . In the previous formulae,LQN(x) is the Laguerre polynomial defined in [58].
Two other functions must also be introduced. They are:

GMN(t) = 1

t
ln

∣∣∣∣ (t − yN)2− y2
M

(t + yN)2− y2
M

∣∣∣∣ (2.14)

HMN(t) = 1

t2
[−2yN + (N −M)GMN(t)] (2.15)

with:

y2
N = 2

(
µ

h̄ω
−
(
N + 1

2

))
(2.16)
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whereµ is the non-interacting Fermi energy. The uniform density of the unperturbed system
can be expressed in terms of the quantitiesyN :

n = 1

π2λ3

∑
N

fNyN (2.17)

wherefN = 1 if the Landau band of indexN contains electrons and 0 if it is empty (in the
latter case,yN would be imaginary). Let us give the expressions of the response functions.

2.3.1. The density/scalar potential response function.The function can be written [52, 59]:

χnV = 1

π2λ3h̄ω
K(q⊥λ, qzλ) (2.18a)

whereqz andq⊥ are the components ofq parallel and perpendicular toB respectively, and:

K(s, t) =
∑
M

∑
N

fNkMN(s)kMN(s)GMN(t). (2.18b)

From the definition of GMN(t), one sees that this response function has singularities for the
values oft = qzλ such that:

t = ±yN ± yM and t = ±yN ∓ yM
provided thatyM is real, i.e. forM 6 N . The integral of GMN(t) in the vicinity of the
singularities is convergent.

2.3.2. Current/scalar potential response vector.This has already been studied by
Skudlarski and Vignale [52]. Here we write it in a different, but rigorously equivalent,
form:

χJV = h̄

mλ
χnVX(q⊥λ, qzλ)i

q

q⊥
∧ ez (2.19a)

with:

X(s, t) = 1

K(s, t)

∑
M

∑
N

fNkMN(s)pMN(s)GMN(t) (2.19b)

pMN(s) =
√
N + 1

2
kM,N+1(s)−

√
N

2
kM,N−1(s) (2.19c)

It can be checked thatq · δJ(q) = q · χJV (q)δV (q) = 0, a necessary requirement for the
conservation of the physical current.

2.3.3. Current/vector potential response matrix.Obtaining the expression to this matrix is
slightly more complicated. To our knowledge it has not been published so far, at least in a
form similar to the previous two response functions. This expression is:

[χJA] = e
(
h̄

mλ

)2

χnV [Y (q⊥λ, qzλ)[O2] + Z(q⊥λ, qzλ)[P3]] (2.20a)
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where the matrices [O2] and [P3] are:

[O2] =

∣∣∣∣∣∣∣∣
(
qy
q⊥

)2
− qyqx

q2
⊥

0

− qxqy

q2
⊥

(
qx
q⊥

)2
0

0 0 0

∣∣∣∣∣∣∣∣
[P3] =

∣∣∣∣∣∣∣∣∣

(
qz
q

)2
0 − qzqx

q2

0
(
qz
q

)2
− qzqy

q2

− qxqz
q2 − qyqz

q2

(
q⊥
q

)2

∣∣∣∣∣∣∣∣∣ .
(2.20b)

The functionsY andZ are defined as:

Y (s, t) = 1

K(s, t)

∑
M

∑
N

fN [pMN(s)− tMN(s)][pMN(s)+ tMN(s)]GMN(t) (2.20c)

Z(s, t) = − 1

K(s, t)

∑
M

∑
N

fN
s2+ t2
s

kMN(s)tMN(s)HMN(t) (2.20d)

tMN(s) =
√
N + 1

2
kM,N+1(s)+

√
N

2
kM,N−1(s)+ 1

2
skMN(s). (2.20e)

The condition for conservation of the physical currentq · [χJA]δA(q) = 0 is fulfilled. In
addition,δJ is gauge invariant: ifδA is changed toδA+∇3, with 3 an arbitrary function,
any of the components ofδJ vanishes.

For obtaining an explicit form of [Ms ] that can be used directly in the calculation of the
kinetic energy, one starts from equation (2.11) which, with the help of equations (2.19a)
and (2.20a), can be written:

mn[Ms ]
−1 = [I] + C[(−X2+ Y )[O2] + Z[P3]] (2.21)

with:

C = −m
n

(
h̄

mλ

)2

χnV . (2.22)

In the previous equations, the dependence ofχnV , X, Y andZ on q⊥λ andqzλ has been
omitted for the sake of simplicity. Now we introduce the matrix [O3]:

[O3] =

∣∣∣∣∣∣∣∣∣
1−

(
qx
q

)2
− qyqx

q2 − qzqx
q2

− qxqy
q2 1−

(
qy
q

)2
− qzqy

q2

− qxqz
q2 − qyqz

q2 1−
(
qz
q

)2

∣∣∣∣∣∣∣∣∣ (2.23a)

that fulfils the relations:

q2[O3] − q2[P3] − q2
⊥[O2] = 0 (2.23b)

where [O2] and [P3] are defined by equation (2.20b). [O2] and [O3] are nilpotent and their
product satisfies:

[O3][O2] = [O2][O3] = [O2]. (2.24)

Using equations (2.23) and (2.24), equation (2.21) can be inverted to give:

1

mn
[Ms ] = [I] + 1

1+ CZ
C(X2− Y + Z(q⊥/q)2)

1+ CZ − C(X2− Y + Z(q⊥/q)2) [O2] − CZ

1+ CZ [O3]. (2.25)
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2.4. Local approximation of the kinetic energy

After Landau’s work [60], the solutions of the Schrödinger equation for a free electron in a
magnetic field are well known. From the eigenvalues, one deduces the explicit expression
of the energy density for the uniform non-interacting electron gas in a magnetic field:

es(n, ω) = 1

2π2λ3
h̄ω

(
1

3
S30+ 2S11

)
(2.26)

where use has been made of the simplifying notations:

Spq =
∑
N

fN(yN)
p(N + 1

2)
q (2.27)

with yN defined in equation (2.16). The kinetic component of the total energy associated
with equation (2.26) is given by:

Ts [n,u0(r)] =
∫
es(n, ω)d3r + m

2

∫
nu2

0(r) d3r. (2.28)

In a homogeneous system, the local approximation amounts to using this expression
with the local values of the density and the current defined in every pointr. In this local
approximation, the kinetic energy is thus:

T 1
s [n(r),u(r)] =

∫
es(n(r), ω(r)) d3r + m

2

∫
n(r)u2(r) d3r (2.29)

with ω(r) defined by:

ω(r) = |∇ × u(r)|. (2.30)

In the uniform case,ω = |∇ × u0(r)| = eB
m

. It is possible, in the local approximation, to
calculate explicitly all the derivatives defined in equations (2.6)–(2.8). In the following, all
the derivatives are taken with respect to the two independent variablesn andω. For the
partial derivatives, the variable held fixed is not indicated. One finds:

S1
s =

∂2es(n, ω)

∂n2
= ∂µ

∂n
(2.31a)

∂2es(n, ω)

∂n2
= π2λ3h̄ω

1

S−10
. (2.31b)

The vectorU1
s is, in reciprocal space:

U1
s = −

∂2es(n, ω)

∂n∂ω
iq ∧ ez (2.32a)

∂2es(n, ω)

∂n∂ω
= h̄S−11− S10

S−10
. (2.32b)

The matrix [M1
s ] involves first and second derivatives with respect toω:

[M1
s ] = mn[I] +

(
∂2es(n, ω)

∂ω2
− 1

ω

∂es(n, ω)

∂ω

)
q2
⊥[O2] + 1

ω

(
∂es(n, ω)

∂ω

)
q2[O3]. (2.33)

Using equation (2.26), one gets:

∂es(n, ω)

∂ω
= h̄

π2λ3

(
S11− 1

3
S31

)
(2.34a)

∂2es(n, ω)

∂ω2
= h̄

π2λ3

1

ω

[
(S−11− S10)

2

S−10
+ (2S11− S−12)

]
. (2.34b)
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Inverting equation (2.33) with the help of equations (2.21) and (2.25), one obtains:

[M1
s ]
−1U1∗

s = iq ∧ ez ∂µ
∂ω

[
mn+ ∂

2es(n, ω)

∂ω2
q2
⊥ +

1

ω

∂es(n, ω)

∂ω
q2
z

]−1

(2.35)

and, with the definition in equation (2.9):

1

χ1
nV

= −
(
∂µ

∂n

)
ω

+ q2
⊥

(
∂µ

∂ω

)2 [
mn+ ∂

2es(n, ω)

∂ω2
q2
⊥ +

1

ω

∂es(n, ω)

∂ω
q2
z

]−1

. (2.36)

Equations (2.35) and (2.36), together with equation (2.10), lead straightforwardly to the
expression ofχ1

JV . All the expressions shown above are more than low-order expansions,
they are exact expressions in the framework of the local-density approximation.

3. Response functions in limiting cases

The behaviour of the response functions in the limits of small and largeq is the basis for
defining approximate kinetic-energy functionals. We present in this section some results for
these limits and, as an example, derive a functional generalizing the gradient expansion,
well known in the absence of a magnetic field.

3.1. Smallq limit

Starting with the expansion ofkMN(s), equation (2.13), for smalls and using the expansion
of the functions GMN(t) and HMN(t), equations (2.14) and (2.15), for smallt , one obtains
the behaviour of the response functions forq⊥ andqz going to zero.

The limit of χnV (q) is:

χnV (0) = − 1

π2λ3h̄ω
S−10 = −

(
∂n

∂µ

)
ω

. (3.1)

Comparing with equation (2.36), one sees that:

χnV (0) = χ1
nV (0). (3.2)

To first order inq2, one obtains:

χnV (q) = χnV (0)+ 1

π2λh̄ω

(
q2
⊥(S−11− S10)− 1

12
q2
zS−30

)
. (3.3)

Equation (3.1) contains the sumS−10 of the inverses of the quantitiesyN . If it happens
that the non-interacting Fermi energyµ is located just on the edge of the Landau band
of index Nm, (i.e. yNm = 0), then the response functionχnV (0) goes to infinity. This
means that, under these particular conditions, the wavefunction for the system perturbed
by δV cannot be constructed as an expansion in unperturbed wavefunctions. Although the
degeneracy of electron states in thex, y-plane is removed by the electronic motion in the
z-direction (parallel to the magnetic field), the number of states per unit energy near the
Fermi level, which is proportional to 1/yNm , becomes infinite and causes the divergence of
the perturbation series.

For χJV , the smallq behaviour, as deduced from equation (2.19a), is:

χJV = h̄

mλ

1

π2λ3h̄ω
(S−11− S10)(q⊥λ)i

q

q⊥
∧ ez (3.4a)

= − 1

m

(
∂µ

∂ω

)
n

χnV (0)iq ∧ ez (3.4b)
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which shows that, to the lowest order inq:

χJV = χ1
JV . (3.5)

We also deduce the limiting form of the functionX(s, t), equation (2.19b):

X(s, t)

s
= −1

h̄

(
∂µ

∂ω

)
n

= − 1

S−10
(S−11− S10). (3.6)

The study of the functions appearing in [χJA] indicates that, for smallq:

Y (s, t)

s2
= − 1

S−10
(2S11− S−12) (3.7)

Z(s, t)

s2+ t2 =
1

S−10

(
1

3
S30− S11

)
. (3.8)

Going back to equation (2.25), one finds the expression of [Ms ] to the orderq2 inclusively:

1

mn
[Ms ] = [I] + C(X2− Y )[O2] − CZ[P3]. (3.9)

Using equations (3.6)–(3.9), one establishes that the lowq limit of [ Ms ] is identical
to the expression of its counterpart calculated in the local approximation, as given in
equation (2.33):

[Ms ] = [M1
s ].

Thus the important result of this paragraph is that,to the lowest order in q, the three quantities
Ss , Us and [M1

s ]−mn[I], defined in chapter 2 in terms of the exact functionalTs [n(r),u(r)],
are identical to the similar quantities obtained with the local functionalT 1

s [n(r),u(r)]. One
can check that equation (3.3), which gives the expression for the response functionχnV (q)
for small q goes correctly to the corresponding expression, deduced from the Lindhard
response function, when the magnetic fieldB vanishes.

3.2. Largeq limit

The complete mathematical study of the largeq behaviour of the response functions is
rather complicated in the present formulation. This study is easier when done using the
integral form of the response function [54]. However, instead of introducing the latter now
(which is not well suited for numerical calculations) it would be easier to use a more direct
procedure which takes advantage of analogies between the limits for largeq and for the
vanishing magnetic field.

The expressions of the response functions given in section 2 show that their dependence
on q occurs always through the dimensionless variabless = q⊥λ and t = qzλ (λ is
proportional to

√
B). The asymptotic form for largeq is thus related to the asymptotic

form for B going to zero. In those cases where the limit forB = 0 is finite, it gives
the behaviour for largeq. This analogy is helpful forχnV andχJA (or [Ms ]), but not for
χJV which vanishes identically forB = 0. We illustrate these analogies in the following
paragraph.

Let us consider firstχnV . Expanding the magnetic response, equation (2.18a), for large
s = q⊥λ and t = qzλ gives:

χnV (q) = −4m

h̄2

n

q2
z

(
1− q

2
⊥
q2
z

)
+ 1

q4
z

γ ω5/2S30 (3.10)
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whereγ is a coefficient which does not depend onω. The next terms in the expansion are
of orderq−6

z . In the limit ω→ 0, it can be shown that:

S30 = 4
√

2

5

(
µ

h̄ω

)5/2

(3.11)

so that, in this limit:

χnV (q) = −4m

h̄2

n

q2
z

[(
1− q

2
⊥
q2
z

)
+ 4k2

F

5q2
z

+ · · ·
]
. (3.12)

To orderq−4
z , this last expansion is equivalent to the Lindhard functionχL(q), the well

known response atB = 0. When the fieldB is finite, one can write, for largeq:

χnV (q)→−4m

h̄2

n

q2
+ 1

q4
δ

(
ω,
q2
⊥
q2

)
(3.13)

whereδ is a function whose more precise definition is useless here.
The response functionχJV is identically zero forB = 0 because a scalar potential does

not induce currents in the non-magnetized case. The expansion that can be derived starting
from equation (2.19a) must be consistent with this limit. Expanding for largeq, the leading
term is found to be:

χJV (q) = 4m

h̄2 ωn
1

q3
i
q

q
∧ ez (3.14)

which vanishes forB = 0, as expected.
We come now to the behaviour of [Ms ] for largeq. In the limitB = 0, the current/vector

potential response function is known [61]:

mn[Ms ]
−1 = [I] − F

(
q

2kF

)
[O3] (3.15a)

with:

F(y) = 3

8
(y2+ 1)− 3

16

(1− y2)2

y
ln

∣∣∣∣1+ y1− y
∣∣∣∣ . (3.15b)

The expansion ofF for y infinite is: 1− 1
5y
−2. We will show that this limit can be

found from the general expression of [Ms ], equation (2.25). For larget , equations (2.19b),
(2.20c) and (2.20d) give:

X(s, t) = − s

s2+ t2 (3.16)

Y (s, t) = − s
2

4
(3.17)

Z(s, t) = − s
2+ t2

4
(3.18)

1+ CZ = 4

5

k2
F

q2
. (3.19)

With these expressions in equation (2.25):

1

mn
[Ms ] = [I] + 5

(
q

2kF

)2

[O3] (3.20a)

or, to orderq−2 inclusively:

mn[Ms ]
−1 = [I] −

(
1− 1

5
y−2

)
[O3] (3.20b)
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which agrees with the largeq limit of equation (3.15a).
The results of this study of the response functions limits for small and largeq can be

applied to the definition of approximate kinetic-energy functionals which generalize the well
known approximations for the zero field [62] to the case of finite magnetic fields. These
approximate functionals are: (i) the gradient expansion functional and (ii) the Thomas–
Fermi–Von Weizs̈acker functional. As an illustration, we derive in the following section the
gradient-expansion functional in the presence of a magnetic field.

3.3. Gradient expansion

In the absence of a magnetic field, this approximation consists in using as the kinetic-energy
functional the local functional supplemented by a correction which, when linearized with
respect to the densityδn(r), gives the correct term of orderq2 in the linear response. For
zero field, the local functional is given by the Thomas–Fermi approximationes(n(r), 0):

es(n(r), 0) = 3

10
(3π2)2/3

h̄2

m
(n(r))5/3 (3.21)

and the correction is:

δes(n(r), 0) = h̄2

72m

|∇n(r)|2
n(r)

. (3.22)

When a magnetic field is applied, the local functional gives the exact behaviour ofSs to
the orderq0, of Us to the orderq1 (the term inq2 does not exist) and of [Ms ] to the order
q2. Therefore, the only additional correction required to have the exact expansion of the
full functional to the orderq2 comes from theq2 term inSs . The corresponding correction,
derived from the response functions, is:

δes(n, ω) = 1
2δn(q)(Ss(q)− S1

s (q))2δn(q) (3.23)

where the subscript 2 means that only the terms of the orderq2 in the difference are kept.
This correction is obtained from the difference of the inverses of the response functions
χnV . Finally, in the gradient expansion approximation, the kinetic energy is:

T grs [n(r),u(r)] =
∫
es(n(r), ω(r)) d3r + m

2

∫
n(r)u2(r) d3r +

∫
δes(n(r), ω(r)) d3r

(3.24a)

δes(n(r), ω(r)) = h̄2

2m
α(n(r), ω(r))

|∇⊥n(r)|2
n(r)

− h̄2

24m
β(n(r), ω(r))

|∇zn(r)|2
n(r)

(3.24b)

α(n, ω) = 1

(S−10)2
(S−11− S10)S11 (3.25a)

β(n, ω) = 1

(S−10)2
S−30S10. (3.25b)

The functionsα andβ are calculated with the local values forn andω. This functional is
defined for any index of the highest populated Landau band. It is not restricted to the first
band(N = 0), as is the case for the functional proposed by Tomishima and Shinjo [11].
Finally, even in the caseN = 0, it does not reduce to the form given by these authors who
also expandedes(n(r), ω(r)) to the second order in∇ω(r).

In relation with the singularities of the sumsSpq , for negative values ofp, when the
Fermi level coincides exactly with a band edge, use of the functional in equation (3.24) can
lead to difficulties if there are points in space where these sums go locally to infinity. In
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such cases,α(n(r), ω(r)) remains finite butβ(n(r), ω(r)) diverges like 1/yNm , Nm being
the index of the first empty band.

4. Effective local-field factor

We consider now an electron gas of average densityn in the presence of a uniform
magnetic fieldB, perturbed by an external scalar potential. The external vector potential is
unperturbed. Such a system may be viewed as a model for an ion embedded in a magnetized
electron gas. It can be treated by an extension to the magnetic case of the pseudo or model
potential method commonly applied to the calculation of bulk properties of simple metals
such as, for instance, their equation of state.

Equations (2.4) and (2.5) withδA = 0 are the starting point of the method. Eliminating
the current, one arrives at:

(Ss + Sxc)δn− (Us +U1
xc)

t ([Ms ] + [M1
xc])−1(Us +U1

xc)
∗δn+ δV = 0. (4.1)

Introducing the non-interacting response function given in equation (2.9), one can write:(
− 1

χnV
+Q(q)

)
δn = −δV (4.2)

with:

Q(q) = Qn(q)+Qu(q) (4.3a)

Qn(q) = Sxc(q) (4.3b)

Qu(q) = U t
s [Ms ]

−1U ∗s − (Us +U1
xc)

t ([Ms ] + [M1
xc])−1(Us +U1

xc)
∗. (4.3c)

In the interacting case, the response function which relates the densityδn to the external
scalar potentialVext is:

χ̃nV (q) = χnV (q)

1−
(

4π
q2 +Q(q)

)
χnV (q)

. (4.4)

Q(q) is the effective local-field factor, entirely defined by the exchange and correlation
energy functionalExc[n(r), u(r)]. In the absence of a magnetic field, the component
Qu(q) is zero. If a local approximationE1

xc is used forExc, Qn(q) is a constant, it
does not depend onq and is simply given by the second derivative ofE1

xc with respect to
the density, calculated for the uniform densityn. If a non-local approximation is used, then
Qn depends explicitly onq.

The behaviour of the response function defined in equation (4.4), whenχnV diverges
because the non-interacting Fermi level coincides with a Landau band edge, is:

χ̃nV (q) = − 1
4π
q2 +Q(q)

.

SinceQ is negative, there exist values of the vectorq for which χ̃nV (q) is singular. The
singularity stems from the fact that the interacting response function cannot be constructed,
in these cases, from the non-interacting response function [52]. The correlations play a
dominant role: they modify the Landau bands population and avoid the fact that any one
can contain an infinitesimal number of electrons [59, 63].

In case the highest populated band contains a finite number of electrons, other
mechanisms can induce poles in the interacting response function. They will be discussed
in section 5.1.
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For finite magnetic fields, little information is available on the electron-gas exchange
and correlation energy. So far, the only known estimate has been published by Skudlarski
and Vignale [59]. These authors have calculated the change1E1

xc(n, ω) = E1
xc(n, ω) −

E1
xc(n, 0) in the random phase approximation (RPA), in the non-polarized case(g = 0).

This approximation is asymptotically exact at high density, when the density parameter
rs(4πr3

s n/3= 1) verifies:

rs < min

(
1;
(
µ

h̄ω
− 1

2

)1/3
)
.

Nevertheless, it is admitted that the RPA is a reasonable approximation at zero magnetic
field, for larger values ofrs , in the metallic regime. To obtain the total exchange and
correlation energy, one can add to1E1

xc(n, ω) theB = 0 contributionE1
xc(n, 0) calculated

in the most accurate approximation available. One must then use the local density
approximation:

E1
xc(n(r), u(r)) =

∫
e1

xc(n(r), ω(r)) d3r. (4.5)

We calculate nowQ(q) explicitly. From equations (2.10) and (2.19a), one obtains:

U ∗s = −
h̄

mnλ
X[Ms ]i

q

q⊥
∧ ez (4.6)

where, for the sake of clarity, the arguments of the functionX(s, t) have been omitted. The
local xc contribution can be calculated in analogy with the derivation of the local kinetic
functional:

U1∗
xc =

∂2e1
xc

∂n∂ω
iq ∧ ez. (4.7)

The matrix [Ms ] is obtained starting from equation (2.25). It is written as:

[Ms ] = mn[I] + Rsq2
⊥[O2] +Wsq

2[O3] (4.8)

and for [M1
xc], one applies the relations found in the local approximation (see

equation (2.33)):

[M1
xc] = R1

xcq
2
⊥[O2] +W 1

xcq
2[O3] (4.9)

with:

R1
xc =

∂2e1
xc

∂ω2
− 1

ω

∂e1
xc

∂ω
(4.10a)

W 1
xc =

1

ω

∂e1
xc

∂ω
. (4.10b)

Adding these two matrices gives:

[Mt ] = [Ms ] + [M1
xc] = mn[I] + Rtq2

⊥[O2] +Wtq
2[O3] (4.11)

with Rt = Rs + R1
xc andWt = Ws +W 1

xc. The inverse of [Mt ] is:

[Mt ]
−1 = 1

mn
[I] − 1

(mn+Wtq2)(mn+ Rtq2
⊥ +Wtq2)

Rtq
2
⊥[O2]

− 1

mn(mn+Wtq2)
Wtq

2[O3]. (4.12)



6858 F Perrot and A Grimaldi

A straightforward derivation leads to:

(Us +U1
xc)

t [Mt ]
−1(Us +U1

xc)
∗ =

(
h̄
mnλ

X(mn+ Rsq2
⊥ +Wsq

2)+ q⊥ ∂
2e1

xc
∂n∂ω

)2

mn+ Rtq2
⊥ +Wtq2

(4.13)

and similarly, for the kinetic contribution alone:

(Us)
t [Ms ]

−1(Us)
∗ =

(
h̄

mnλ
X

)2

(mn+ Rsq2
⊥ +Wsq

2). (4.14)

Finally, the current contribution to the effective local-field factor is:

Qu(q) =
(

h̄

mnλ
X

)2

(mn+ Rsq2
⊥ +Wsq

2)−
[

h̄
mnλ

X(mn+ Rsq2
⊥ +Wsq

2)+ q⊥ ∂
2e1

xc
∂n∂ω

]2

mn+ Rtq2
⊥ +Wtq2

(4.15)

which vanishes ife1
xc does not depend onω.

5. Applications

We have performed two types of applications of the previous study. First, the effective local-
field factor has been systematically computed for densities in the metallic range 16 rs 6 5
and magnetic fields 06 B/B0 6 1, whereB0 is the reference field (1 atomic unit of field
is 2.35× 109 Gauss). Then, we have applied the linear-response theory to the calculation
of the equation of state of metallic aluminium in the presence of a magnetic field, in the
domain of densities where the use of a standard weak model potential with valenceZ∗ = 3
is possible.

5.1. Numerical study of the effective local-field factor

The local-field factorQu(q) defined in equation (4.15) has been calculated as a function of
the variablesq⊥ andq, in the rangeqλ 6 10. The angleθ betweenq and thez-axis (in the
direction ofB) has been sampled in 54 values from 0 toπ . For a simpler graphical display
of the results, we have calculated the angular average:

〈Qu(q)〉 = 1
2

∫ π

0
Qu(q) sinθ dθ.

Figure 1 shows the variations of〈Qu(q)〉 for rs = 4 and for field valuesB/B0 = 0.1, 0.2,
0.3, 0.5 and 1. For all these fields, only the first Landau band(N = 0) is populated. One
sees that:

(1) The variations with respect toqλ for a fixedB are not monotonous;〈Qu(q)〉 tends
towards a constant limit for large values ofqλ.

(2) The variations with respect toB for a fixedqλ are not monotonous.
(3) The sign is not constant. The partQn of the local-field factor associated with the

density change of the xc potential is always negative, but this is not true forQu(q).
The accidents on the curves, particularly forB/B0 = 0.2, are due to the logarithmic

singularities of the function GMN(t) mentioned in section 2.3 (here forM = N = 0). We
will return to this point later.

The influence of the density is illustrated by moving tors = 2. The variations of
〈Qu(q)〉 for five values of the fieldB/B0 = 0.1, 0.2, 0.3, 0.5 and 1 are displayed in
figure 2. Now, the index of the band containing the Fermi level is no longer always the
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Figure 1. Current contribution to the local field factor, averaged over the angle betweenB and
q, as a function ofqλ (λ is the magnetic length) for several values of the magnetic field (0.1,
0.2, 0.3, 0.5 and 1, in units ofB0). Density: rs = 4.

Figure 2. Current contribution to the local field factor, averaged over the angle betweenB and
q, as a function ofqλ (λ is the magnetic length) for several values of the magnetic field (0.1,
0.2, 0.3, 0.5 and 1, in units ofB0). Density: rs = 2.
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Table 1. The value (independent ofq) of the density contributionQn to the local field factor,
and the asymptotic value of the current contributionQu (averaged over the angle betweenB
andq) to the local field factor, for various values of the density parameterrs and of the magnetic
field B.

rs B/B0 Qn 〈Qu(q)〉
2 0.1 −3.62 0.095

0.2 −3.26 0.842
0.3 −3.70 −0.121
0.5 −3.59 0.379
1.0 −3.75 −0.628

4 0.1 −14.43 +2.48
0.2 −16.39 −4.46
0.3 −14.89 −0.41
0.5 −13.30 +4.86
1.0 −13.20 +8.09

same. This index isN = 0 for B/B0 = 1 and 0.5,N = 1 for B/B0 = 0.3 and 0.2 and
N = 4 for B/B0 = 0.1. We see that, for this density, several extrema in the variations of
〈Qu(q)〉 as a function ofqλ may exist.

In order to compare the relative importance of the two contributionsQn andQu to the
local field factor, in table 1 we give the value (independent ofq) of Qn and the quasi-
asymptotic value of〈Qu(q)〉 (for qλ = 10).

The interacting response function to be used in the calculation of the induced density
is χ̃nV (q), as defined in equation (4.4), withQ(q) calculated in the local approximation of
Exc, as shown above. We have found that this response function may have, for particular
values of the parameters, one or several poles. Such a situation does not occur in the
absence of a magnetic field. In order to understand the origin of these poles, let us consider
the denominator of̃XnV (q) that can be written:

1+
(

4π

q2
+Q(q)

)
|χnV (q)|.

It has been seen thatQu can be negative and therefore enhance the effect ofQn. In
addition, there are values ofqz for which |χnV (q)| has a logarithmic singularity and becomes
infinite. If 4π/q2+Q(q) is also negative in the neighbourhood of the singularity, then the
denominator can vanish. Figure 3 shows the variations of〈χ̃nV (q)〉 (the average is over the
angle ofq) for rs = 4 and four values of the magnetic fieldB/B0 = 0.1, 0.2, 0.5 and 1.
For B/B0 = 0.2, poles ofX̃nV (q) do exist, which give rise to the spikes that are seen in
figure 3.

The systematic search for poles ofX̃nV (q), as functions ofrs , B, q and qz is quite
intricate. We have found that the domain where poles do exist is approximately bound by:

rs > 3.50 and 0.3> B/B0 > 0.1.

The values ofq involved are in general in the range 3> qλ > 1. Figure 4 corresponding
to rs = 2 shows that there is no pole in this case. It seems that the Fermi level is always
in the first Landau band(N = 0) when a pole appears.

The existence of values ofq for which the densityδn(q) becomes infinite (which would
imply collective density oscillations in space) is likely a non-physical consequence of the
approximations made. Several causes may be invoked.

(1) The accuracy of the numerical fit ofE1
xc in the strong-field regime (bottom of the

first Landau band) and in particular the variation like 1/rs discussed by Skudlarski and
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Figure 3. Density/scalar potential interacting response function, averaged over the angle between
B andq, as a function ofqλ (λ is the magnetic length) for several values of the magnetic field
(0.1, 0.2, 0.5 and 1, in units ofB0). Density: rs = 4.

Vignale [59]. Any inaccuracy inExc can produce much larger inaccuracies in the second
derivatives which enter the local-field factor.

(2) The RPA approximation forE1
xc.

(3) The use of the local approximation forExc, which discards anyq-dependence of
the derivatives with respect to density and current, although the local approximation is in
principle good for strong magnetic fields (short magnetic lengthsλ).

(4) The omission of spin polarization because the polarized version ofE1
xc is not

available.
In conclusion, the numerical results show that the use of the linear response method

in conjunction with the xc local-density approximation cannot be considered as reliable for
density parametersrs > 3.50. The true origin of the problem remains to be understood.
Also, it would be useful to know whether this drawback could be overcome with a better
knowledge ofExc.

5.2. Equation of state of aluminium

We now present results for the total energy and pressure of an aluminium atom, in a domain
of densities where linear response theory can be applied together with a local model potential
for electron–ion interaction. The aluminium atom is here embedded in a jellium without
accounting for the periodic structure of the lattice which leads, in the presence of a magnetic
field, to mathematical complexity outside the scope of this study [64].

We first consider a jellium with uniform densityn. The unperturbed energy of the
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Figure 4. Density/scalar potential interacting response function, averaged over the angle between
B andq, as a function ofqλ (λ is the magnetic length) for several values of the magnetic field
(0.1, 0.2, 0.3, 0.5 and 1, in units ofB0). Density: rs = 2.

valence electrons(Z∗ = 3) is:

Eu = Z∗

n
(es(n, ω)+ e1

xc(n, ω)) (5.1)

where es(n, ω) is given by equation (2.26) and wheree1
xc(n, ω) is the xc energy in the

approximation of Skudlarski and Vignale. Then, a spherical cavityna(r) with radiusRa
equal to the atomic radius, and with chargeZ∗, is introduced into the jellium. An aluminium
ion is put at the centre of the cavity. This ion is modelled by the potential [65]:

Vps = −4πZ∗e2

q2
cos(qRc) exp(−(q/q0)

2) (5.2)

whereRc is the core radius. The effect of the exponential factor is to cut the largeq-
vectors. The numerical values are:Rc = 1.367 au andq0 = 5 au. The cavity itself creates
a perturbing potential which is, in Fourier space:

Vcav= 4πZ∗e2

q2
f (qRa) (5.3a)

f (qRa) = 3
sin(qRa)− qRa cos(qRa)

(qRa)3
. (5.3b)

The total external potential is therefore:Vext = Vps + Vcav. This potentialVext is short
ranged and induces a charge densityδn(r) which integrates to zero. The perturbation is
weak and hence use of the linear response method is justified. The perturbation of the order
1 and 2 are:

E1 = n
∫
Vext(r) d3r (5.4a)
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which can be calculated analytically:

E1 = 4πZ∗e2

(
1

2
R2
c +

1

q2
0

− 1

10
R2
a

)
(5.4b)

and:

E2 = 1
2

∫
Vext(q)χ̃nV (q)Vext(q) d3q. (5.5)

The change in the ion–ion interaction energy is:

Eii = 1

2

∫
(n− na(r)) e2

|r − r′| (n− na(r)) d3r d3r ′ − 1

2

∫
n

e2

|r − r′|n d3r d3r ′

+
∫
(n− na(r))Z

∗e2

r
d3r (5.6a)

which is easily calculated:

Eii = −3

5

Z∗2e2

Ra
. (5.6b)

Adding all the previous contributions, one obtains the binding energy of the aluminium
atom in the SMEG:

Eb = Eu + E1+ E2+ Eii. (5.7)

So far the effect of the magnetic field on the internal structure of the Al+3 ion, whose
configuration is 1s2 2s2 2p6, has been ignored. This effect for values of the field considered
here must now be investigated. The perturbing one-electron Hamiltonian for the core states
is:

1H = −1

2
ih̄ω

∂

∂ϕ
+ 1

8
mω2r2 cos2 θ. (5.8)

ϕ and θ are the common angles of the position vector with respect to the axes. We have
diagonalized this perturbation in the subspace spanned by the one-electron wavefunctions
of the aluminium ground state (1s, 2s, 2p, 3s and 3p). These wavefunctions were calculated
for zero field with a self-consistent atomic structure program solving the Kohn–Sham
equations with an xc potential in the local-density approximation. We have found that
the shift of the core levels 1s, 2s and 2p is reproduced to an excellent accuracy (better than
3× 10−4 Rydberg) by a first-order perturbation calculation, for magnetic fieldsB 6 B0.
Hence, the change in the core wavefunctions is negligible. The energy perturbation due to
the magnetic field can be calculated to first order:

Ec0 = 1
8mω

2[ 2
3〈r2〉2s+ 2〈r2〉2p] (5.9)

in terms of the average square of the radii in shells 2s and 2p. The 1s contribution is
negligible. The contributions linear inω for the 2pm = 1 and 2pm = −1 states cancel
because the projections of the angular momentum are opposite. The magnetic corrections
for core states being independent of the density, they do not contribute to the pressure.

In table 2, we give the equation of state results for magnetized aluminium. The
compression is:

c =
(
rs0

rs

)3
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Table 2. Equation of state of magnetized aluminium, as a function of the electron density
parameterrs , from 1.72 to 2.12.E is the binding energy per atom (Rydbergs),P the pressure
(Mbars) andy the reduced Fermi energyµ

h̄ω
− 1

2 .

B/B0 1.72 1.77 1.82 1.87 1.92 1.97 2.02 2.07 2.12

0.0 −E 3.7739 3.8355 3.8812 3.9141 3.9366 3.9507 3.9581 3.9602 3.9581
P 1.880 1.334 0.924 0.616 0.387 0.216 0.091−0.001 −0.066

0.1 −E 3.7503 3.8152 3.8681 3.8929 3.9161 3.9330 3.9439 3.9416 3.9395
P 1.780 1.473 1.115 0.561 0.423 0.279 0.111−0.031 −0.064
y 5.745 5.351 5.068 4.806 4.472 4.216 4.039 3.856 3.589

0.2 −E 3.7105 3.7860 3.8442 3.8899 3.9289 — 3.8919 3.9025 3.9048
P 2.179 1.662 1.222 0.942 0.835 — 0.259 0.117−0.020
y 2.607 2.396 2.235 2.115 2.035 2.000 1.826 1.659 1.521

0.3 −E 3.6742 3.7459 3.7969 3.8315 3.8546 3.8697 3.8804 3.8884 —
P 2.190 1.524 1.007 0.642 0.403 0.259 0.179 0.123 —
y 1.556 1.411 1.296 1.205 1.135 1.082 1.044 1.018 1.003

0.5 −E 3.5880 3.6099 3.6449 3.6716 3.6854 3.6871 3.6776 3.6587 3.6329
P −0.278 0.855 0.768 0.451 0.164−0.079 −0.272 −0.406 −0.495
y 0.858 0.722 0.611 0.519 0.443 0.380 0.327 0.282 0.213

1.0 −E 2.8557 2.8401 2.8113 2.7688 2.7138 2.6535 2.5830 2.5111 2.4404
P −0.013 −0.552 −0.838 −1.075 −1.223 −1.313 −1.340 −1.317 −1.255
y 0.128 0.090 0.076 0.065 0.055 0.047 0.041 0.035 0.031

with rs0 the equilibrium density parameter for the zero magnetic field, that isrs0 = 2.07.
The energy tabulated is:

E = Eb + Ec0
whereE is the total energy of the magnetized atom in the jellium minus the energy of the
ion at zero field. The energies are in Rydberg units and the pressures in Mbars. We give
also the quantity:

y = µ

h̄ω
− 1

2
whose integer part is the index of the Landau band where the Fermi level is located.

For the magnetic fieldB = 0.1B0, the Fermi level lies, depending on the density, in the
band of indexN = 5, 4 or 3. ForB = 0.2B0, it is in theN = 2 or 1 band. ForB = 0.3B0,
it is still in the N = 1 band, and for larger values of the field, it is always in the lowest
band,N = 0.

The variations of pressure with density are shown in figure 5. The discussion in section 4
has shown that the linear response method is not valid when the highest occupied Landau
band is nearly filled or empty. This corresponds to the ranges of densities where there are
no results in the tables (indicated by —) and where the curves break off. To our knowledge,
at the present time there is no theory able to treat properly the equation-of-state problem
for these values of the couple density-magnetic field. The results show a non-monotonous
behaviour of the pressure as a function of volume, particularly forB = 0.5B0. They also
indicate that the pressure can become negative for volumes where it is positive without a
field. This means that the magnetized atom shrinks and its charge density is much more
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Figure 5. Pressure in metallic aluminium, as a function of the density parameterrs , for magnetic
fields between 0 and 1, in units ofB0.

localized. It behaves as the atom without a field for a larger volume. ForB = B0 for
instance, the equilibrium radius isrs = 1.72 instead of 2.07 for a zero field.

6. Conclusion

We have studied the properties linked with the linear response of the uniform electron gas
in the presence of a strong magnetic field. In the non-interacting case, we have given
closed-form expressions for the three independent response functions: (i)χnV which gives
the density induced by a scalar potential, (ii)χJV which gives the current induced by a
scalar potential, (iii) [χJA] which gives the current induced by a vector potential. Then it
has been shown that, in the interacting case, the exchange and correlation effects, which
depend also on the paramagnetic current, introduce the response functionsχJV and [χJA]
into the effective local-field factor included in thẽχnV , even when the external perturbation
is purely scalar.

The xc effects have been accounted for in the local-density approximation, using the
only known formE1

xc(n, ω) of the energy functional for the SMEG. The interacting response
function χ̃nV (q) is singular when the Fermi level coincides with a Landau band edge. The
numerical study of the effective local-field factor shows that this response function can
also have poles in a particular region of the plane density-magnetic field (rs > 3.5 and
0.3 > B/B0 > 0.1). This is probably a non-physical consequence of the approximations
made. But this point deserves further theoretical investigation. Were the existence of such
poles shown to be independent of the approximation used forExc, then the local-density
approximation would not be valid in such magnetized systems.

Restricting to a region of the density-magnetic field plane outside the domain indicated
above, we have applied the linear response method to the study of the equation of state of
aluminium. The densities treated are in the range where the linear response method with a
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simple model potential is of common use in the absence of a magnetic field (compressions
going from 0.8 to 1.5). The magnetic fields considered reach the valueB = B0, or
2.35× 109 Gauss. The results show the importance of the modifications induced by the
magnetic field, in particular those resulting from electron-charge density localization.
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